
 1

Defne Bayık
Hande Gazey
CS-112 WEEK 2 (Feb. 18-22, 2008)

Topics Covered

1. Call by Value
2. Call by Reference
3. Passing to methods
4. Returning array by methods
5. Selection Sorting
6. Linear Search
7. Multidimensional array
8. Introduction to Classes and Objects

Call by Value:

Example:

 public static void swap(int n1, int n2)
{
 int temp=n1;
 n1=n2;
 n2=temp;
}

Method invocation

Main

int x=10, y=5;
swap(x,y);
display(x,y) ;
expected results : x=5 and y=10
actual results: x=10 and y=5

Call by value: The reason for that is call by
value variables. Stay in method and are not
sent to main n1, n2, temp are local variables
for swap method

Call by Reference:

Example:

public static void m(int number, int
[] numbers){

 int x = 1;
 int [] y = new int [10];

 Swap()
 n1 n2
 temp

 Main
 x y stack

Memory

 2

m(x,y);
 number = 1000;
 numbers[0] = 555;

Main

int x = 1;
int [] y = new int [10];
m(x,y);
System.out.println (“ x: “ + x);
System.out.println (“ y[0]: “ + y[0]);

expected result : x=1, y[0]=555
actual result : x=1, y[0]=555

Call by reference: pass the reference is only
for arrays, we pass the reference and change
array locations/parameters. When we are
done with them, they will disappear from the
main memory.

There are two types of memory:
Stack and Heap

Stack concept: When we are done with the
information and the methods, they are erased
from main memory.

Heap concept: Special memory used for
storage allocation for arrays.

Passing Arrays to Methods:

- Linear Search
- Algorithm Complexity

public static int linearSearch(int[] list, int
key){

// return the index location of “key” if
// it does not exist in array return -1

 int r=-1;
for (int i=0; i<list.length && r== -1;

i++){
 if(key==list[i])
 r=i;

}
return r;

}

0

9

pointing the
same
memory
location

heap

 m()
number
 numbers[]

 Main
 x y[] stack

Memory
formal
parameters

passing an array to
method syntax

 3

Complexity of Algorithms:

number of
compression= 1/n + 2/n … + n/n

= (1 + 2 …. + n)/n = n(n+1)/2n = (n+1)/2

if n is a very large number ~= n

Selection Sort:

ascending order = increasing order
descending order = decreasing order

Example:

9
5
4
8
1
6

 1.
pass

6
5
4
8
1
9

 2.
pass

max=9

6
5
4
1
8
9

 3.
pass

max=8

1
5
4
6
8
9

max=6

 4.
pass

1
4
5
6
8
9

max=5

 5.
pass

1
4
5
6
8
9

max=4

numer of compressions= 5

= 1 + 2 + 3 + 4 + 5 => 1 + 2 + …. + (n-1) = n.(n-1) / 2

assuming that n is very large (n2/2)-(n/2) ~= n2 Big O notation.

public static void selectionSort(double[] list){

for (int I = list.length-1; i >= 1; i--){
// find the maximum in the list [0,…,i]
 double currentMax = list[0];

int currentMaxIndex;
for (int j=1; j <= i; j++){

if (currentMax < list[i]){
currentMax = list[i];

 4

currentMaxIndex = j;
}

}
// swap list[i] with currentMax
if (currentMaxIndex != i){
list[currentMaxIndex] = list[i];
}

 }
}

Return an Array From a Method:

public static int[] reverse(int[] list){

int[] reverse = new int [list.length];
 for (int i=0; i < list.length; i++){
 reverse[list.length-i-1]=list[i];
 }

return reverse;
}

Two Dimensional Arrays:

dataType [][] arrayRefVariable;

int [][] matrix;

int matrix [][]; not preferable

matrix = new int [5][5];

int [][] matrix1 = new int [5][6];

Initializing a matrix with random values

for (int row = 0; row < matrix.length;
row++){

for (int column = 0; column <
matrix[row].length; column++){

 Sorting in Descending Order

 Sorting
Ascending
Order

Array
 Reverse
 Array

0 1 2 3 4

0

1

2

3

matrix1[0][1] = 5;

 5

matrix [row] [column] = (int) (
Math.random() * 100);

 }
}

Initialization using an initialization list:

int [] [] = { {1, 2, 3},
 { 4, 5, 6},
 { 7, 8, 9},
 { 10, 11, 12}
 };

Returning a multidimensional array

public static double [] [] corner (double []
[] a, int size) {

 double [] [] temp = new double
[size] [size];
 int row, column;

for (int row = 0; row < size; row++)
{

 for (int column = 0; column
< size; column++){
 temp [row] [column] =
a [row] [column];
 }
 }
 return temp;
}

main ()

double [] [] b = corner ();

For arrays, we use call by reference. We
pass the location to methods.
The storage location for arrays is the heap.

 6

 corner
 a [][] temp

 main
 b [][]
 stack

 pointer ======> an array of pointers
=======> multidimentional array

Ragged arrays

int [] [] triangleArray = { { 1, 2, 3, 4, 5 },
 { 2, 3, 4, 5 },
 { 3, 4, 5 },
 { 4, 5 },
 { 5 }
 };

int [] [] triangleArray = new int [5] [];

triangleArray [0] = new int [5];
triangleArray [1] = new int [4];
triangleArray [2] = new int [3];
triangleArray [3] = new int [2];
triangleArray [4] = new int [1];

 1 2 3 4 5

2 3 4 5

3 4 5

4 5

5

 7

Chapter 7

Classes and Objects:

Programming Paradigms (Approaches):
 Procedural Programming
 Object Oriented Programming
 Functional Programming

What is a class?
 A class is an encapsulation of data
methods.
 It is inaccessible and safe.

Example:

class Circle {
 double radius;

 Circle () = { };//default constructor

 Circle (double newRadius){
 //constructor
 radius = newRadius;
 }

 double getArea() {
 //method
 return
(radius*radius*Math.PI);
 }
}

Another class

main()

Circle myCircle;

myCircle = new Circle();

Circle myCircle = myCircle = new Circle();
// invokes the default method

Circle yourCircle = new Circle (2,0); //
invokes the other constructor

 radius 1. 0

myCircle

 radius 2. 0

yourCircle

 8

double myArea = myCircle.getArea();
double yourArea = yourCircle.getArea();
// invoking methods for objects

Questions:

1. Why does call by value changes the
values of the variables?

Because, by call by value local variables are
created inside the method and erased from
main memory after we finish using that
method.

3. How multidimensional arrays are stored in
the memory?

A pointer points an array of pointers that is
present in the heap memory and each pointer
in this array stores the location of one row of
the multidimensional array.

5. What should be done to do column wise
initiation?

for (int column = 0; column <
matrix[0].length; column++)
{
 for (int row = 0; row <
matrix.length; row++)
 {
 matrix[row][column]=5;
 }
}

2. What are the differences between stack
and heap type of memory?

Heap memory is a special storage allocation
for arrays. Stack memory contains variables
and methods, whereas heap memory stores
array elements.

4. What is the meaning of encapsulation?

The user of the class does not need to know
how the class is implemented so the details
of implementation are encapsulated and
hidden from the user. This is known as class
encapsulation, this also provides safety.

object
name

method
name

